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Engineering selection rules of transitions is a useful strategy for coupling and decoupling qubits in super-
conducting quantum circuits. Following this approach, we implement a tunable coupling scheme between two
flux qubits. The qubits are coupled parametrically under microwave driving via the nonlinear inductance of a
third qubit. The measured on-state coupling as well as the off-state residual coupling depends on the coupler
bias and agrees quantitatively with a calculation of transition matrix elements of a three-qubit Hamiltonian.
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Superconducting qubits �see, e.g., Ref. 1 for a recent re-
view� are among the most promising candidates for the
implementation of quantum information processing. Simple
demonstrations of quantum algorithms are currently within
the reach of experimentalists. Nontrivial two-qubit manipu-
lations are possible with fixed coupling between qubits.2,3

However, for more complicated experiments with multiple
qubits and future scale-up it is crucial to switch on and off
the coupling energy between qubits dynamically and
precisely.

There are two obvious routes toward controlling the ef-
fective interaction between qubits. One option is to control
the coupling energy between qubits �actual tunable
coupling�.4–9 Such schemes have been implemented by sev-
eral groups and observed spectroscopically or by monitoring
ground-state properties.10–13 Expanding those ideas, a micro-
wave approach was also developed.14–17 This parametric
driving approach has the benefit of functioning ideally at the
coherence optimal point,18–20 which is of particular impor-
tance for flux qubits that are the topic of the present study.
The scheme relies on engineering two-qubit transition rules
and canceling static interactions using nonlinear quantum
couplers. Proposals for microwave controllable coupling
without intermediate coupler elements exist as well.21,22

These methods overcome selection rule issues either using
double resonances or biasing slightly away from the optimal
point. For more discussion on the selection rules in super-
conducting quantum circuits, see Refs. 23 and 24.

The competing approach is controlling the detuning be-
tween qubits in the presence of a small fixed off-diagonal
interaction. This works nicely for two qubits,25,26 and has
been generalized by using a resonator to mediate the cou-
pling in the spirit of cavity QED.27–29 The main difference
between these approaches is that in the tunable coupling
paradigm control happens via a two-qubit operator while in
the detuning approach control is solely via single-qubit terms
in the system Hamiltonian. A benefit of nonlinear couplers is
the possibility of suppressed off-state coupling, both in diag-
onal and off-diagonal, without sacrificing the on-state cou-
pling strength.30 For multiqubit experiments detuning alone
may not suffice because the off-diagonal coupling terms per-
sist.

In this Rapid Communication we implement a tunable

coupling scheme where two flux qubits biased at the coher-
ence optimal points are inductively coupled via a third cou-
pler qubit.15 We study the dc bias dependence of the tunable
coupling, facilitated by the versatile on-chip coil design, and
quantitatively characterize the transition matrix elements and
the residual coupling energy.

The three-qubit system is described by the Hamiltonian

H = −
1
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where � j and � j =2Ipj�� j are, respectively, the tunneling and
bias energies between the two persistent-current states of qu-
bit j, and �̃x

j and �̃z
j are the Pauli matrices operating on qubit

j. The persistent current is Ipj, and the flux bias with respect
to the degeneracy point is �� j =� j −�0 /2 where �0
=h / �2e�. The coupling energy is given by Jkl=MklIpkIpl,
where Mkl is the mutual inductance between qubits k and l.

When qubits 1 and 2 are biased near the degeneracy
points ��1���2�0 and when the condition �1��2	�3
is fulfilled, an adiabatic approximation on qubit 3, or the
coupler, results in an effective two-qubit Hamiltonian. In or-
der to suppress dephasing due to flux noise, we operate the
qubits at the coherence optimal points where the single-qubit
excitation energies of qubits 1 and 2, E10 and E01, are insen-
sitive to the global magnetic field. Then, the effective Hamil-
tonian consists of two diagonal single-qubit terms and an
off-diagonal coupling term +J12

eff�x
1�x

2 �Ref. 15�. Here we
have introduced the Pauli matrices without a tilde for the
effective two-qubit system. The coupling strength is given by

J12
eff � J12 −

2J23J13�3
2

��3
2 + �3

2�3/2 , �2�

where the first and second terms can be understood, respec-
tively, as the direct and indirect inductive interaction. If qu-
bits 1 and 2 are far detuned, i.e., �J12

eff�	 ��1−�2�, the effect of
the off-diagonal coupling becomes negligible, and the two
qubits are decoupled in the first order. �See below for the
discussion on further decoupling.�

To switch on the coupling, microwave modulation of ��3,
with an amplitude of ��3

ac, is applied to the coupler. Owing

PHYSICAL REVIEW B 79, 020507�R� �2009�

RAPID COMMUNICATIONS

1098-0121/2009/79�2�/020507�4� ©2009 The American Physical Society020507-1

http://dx.doi.org/10.1103/PhysRevB.79.020507


to Eq. �2�, the matrix element �00���H /��3��11�,
�01���H /��3��10����J12

eff /��3� is finite. The bras and kets
represent eigenstates of the effective two-qubit system.
When the microwave pulse is at the sum or difference fre-
quency of the two qubits, it parametrically induces the tran-
sition �00�↔ �11� or �10�↔ �01� and effectively switches on
the coupling in the form of the operator �x

1�x
2
�y

1�y
2 in the

rotating frame. Note that though a finite J12
eff modifies the

eigenstates and renormalizes the qubit energies, due to sym-
metry two-qubit transitions are still forbidden in the first or-
der for a flux drive on either qubit 1 or 2. This is why the
coupler is required.

Experiments were done with the three-qubit sample
shown in Fig. 1. For qubit manipulations, microwave pulses
with controllable durations were applied through a current
line �not shown� which was inductively coupled to all the
qubits, more or less uniformly, with a mutual inductance M
�0.1 pH. The relaxation times of the two qubits were
around 300 ns, limited possibly by the bias current noise
flowing asymmetrically into each superconducting quantum
interference device �SQUID�.20 The qubit readout was per-
formed by using switching of the SQUIDs from the super-
current state to the voltage state under a current pulse.31

Change in the switching probability reflects excitation of qu-
bits from the ground state. To avoid readout crosstalk, only
one SQUID was operated at a time, and the bias current of
the second one was kept at zero.

To characterize the qubits, we performed spectroscopy
measurements using SQUIDs 1 and 2 individually. The qu-
bits were excited with a microwave pulse of 5-�s duration

before each readout. Figure 2 illustrates a wide-range spec-
trum taken with SQUID 2. The global flux bias was swept in
the measurement. Because of the geometry, signals from qu-
bits 2 and 3 are mainly seen. The spectrum is rather compli-
cated due to the interactions. Nevertheless, it is fitted well
with the eight-level Hamiltonian �1�, and all the relevant qu-
bit parameters are deduced reliably �see also Ref. 32�.

We now focus on the effective two-qubit system. In Fig. 3
we show the detailed spectroscopy as a function of ��3.
While qubits 1 and 2 are kept at the coherence optimal points
the single-qubit excitation energies, E10 and E01, and the col-
lective excitation energy, E11 are plotted. The ��3 depen-
dence of the excitation energies is perfectly fitted by using
the parameters in the caption of Fig. 2 after refinement
within the error bars.

As a measure of the on-state coupling, we use the oscil-
lation frequency �2q of the �00�↔ �11� transition, determined
by time-domain measurements. Applying a microwave pulse
in resonance with this transition for the time 1 / �2�2q� gen-
erates a gate equivalent to the iSWAP gate, which composes
a universal set of gates together with some single-qubit
gates. The Rabi frequency is naturally driving-power depen-
dent; hence, we use the maximum microwave power allowed
in the measurement setup. Figure 4�a� shows �2q as a func-
tion of ��3 while the flux biases of qubits 1 and 2 are kept at
the coherence optimal points. The Rabi frequency shows
nonmonotonic dependence, which is well compared to the
ideal case predicted by Eq. �2�: the transition matrix element
��00���H /��3��11�� vanishes at ��3=0 and has a maximum

1µm

SQUID2SQUID1

qubit2qubit1 qubit3

line2

line1

ground

FIG. 1. Scanning electron micrograph of the three coupled flux
qubits with two readout dc SQUIDs, taken from an angle. The
sample was fabricated by electron-beam lithography and shadow
evaporation technique using Al films. Each qubit is a superconduct-
ing loop intersected by four Josephson junctions, among which one
is 
 j �j=1,2 ,3� times smaller compared to others. The 
 j values
�	0.5� are designed to satisfy the condition �1��2	�3. Two qu-
bits �qubits 1 and 2� are individually integrated into SQUIDs for the
readout �SQUIDs 1 and 2�. The third one �qubit 3�, which is placed
in between and shares a part of the loop with qubits 1 and 2, serves
as a coupler. An external superconducting coil is used to apply a
global magnetic flux. Together with two local bias lines �lines 1 and
2�, it allows us to control the flux bias of each qubit, � j, indepen-
dently. The sample was placed at a temperature of about 20 mK in
a dilution refrigerator.
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FIG. 2. �Color online� �a� Spectrum at 3.2–12 GHz of the three-
qubit system measured with SQUID 2 as a function of the flux bias.
The global flux bias was swept under a condition of ��1���2

���3−3 m�0. Dark �red� and bright �yellow� indicate low and
high switching probabilities of the readout SQUID, respectively.
The readout contrast is at best about 15%. �b� Calculated energy
levels of a three-qubit Hamiltonian �solid lines� are plotted on the
same data. The fitting parameters obtained from the least-squares
method are as follows: Ip1 /h=579�6 GHz /�0, Ip2 /h
=602�8 GHz /�0, Ip3 /h=579�10 GHz /�0, �1 /h=2.92�0.09
GHz, �2 /h=3.37�0.05 GHz, �3 /h=6.40�0.05 GHz, J12 /h
=−0.02�0.03 GHz, J23 /h=0.42�0.05 GHz, J13 /h=0.44�0.04
GHz. The unfitted traces are attributed to coupled excitations

among the qubits and resonant modes in the circuit under the rela-
tively strong microwave drive.
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at around ���3�=�3 / �4Ip3�. Despite the smallness of �3, nu-
merical calculation based on the three-qubit Hamiltonian fur-
ther confirms quantitative agreement as depicted by the solid

line in Fig. 4�a�. Note that the flux drive is still in the linear
regime as the drive amplitude is small compared to the peak
width. The numerics also show that the contribution of si-
multaneous flux drives on qubits 1 and 2 is very small due to
the suppressed transition matrix elements. The result remark-
ably demonstrates what has been predicted in theory15 and
measured before in a special case without on-chip coils,17

i.e., proper dc biasing of the coupler qubit indeed modifies
the selection rule of the sum-frequency transition. Moreover,
with help of the bias coils, we can tune to the maximum of
the transition matrix element.

In the absence of the microwave drive, the coupling
should be ideally zero. However, the effective coupling in
Eq. �2� is not exactly zero, as the compensation between the
direct and indirect coupling terms is not complete. Indeed,
J12 is supposed to be negligible in the particular sample de-
sign. Therefore, the residual off-diagonal coupling of the
form +Jres

xx �x
1�x

2 shifts E01 and E10 by ��Jres
xx �2 / ��1−�2�, re-

spectively. As ��1−�2� is rather small in this sample, the
energy shift is relatively large. At the condition where we get
the maximum �2q, it is estimated to be �3.8 MHz from Eq.
�2�, while the integration of the red curve in Fig. 4�a� gives
an estimation of �49 MHz, indicating that the adiabatic ap-
proximation is not very accurate due to the small �3. How-
ever, in the case of two-qubit experiments, the effect can be
considered merely as a renormalization of single-qubit fre-
quencies. In a multiqubit system, on the other hand, single-
qubit Rabi frequencies depend on the states of other qubits.
Therefore, for perfect decoupling and unconditional single-
qubit operations, one has to carefully suppress the Jres

xx term.30

We also find that there exists another residual coupling
term in the form of −�Jres

zz /2��z
1�z

2. The residual coupling
strength is determined by Jres

zz = �E11−E01−E10� /2 from the
data in Fig. 3 and plotted in Fig. 4�b�. It shows nonmono-
tonic dependence on ��3, and again well reproduced by the
calculation. From the comparison of Figs. 4�a� and 4�b�, we
see that the on/off ratio defined as �h�2q /Jres

zz � is at best 	10
in this sample.

In a realistic quantum processor architecture, �2q should
be as large as possible, and Jres

zz and Jres
xx should be small.

Having confirmed that the three-qubit Hamiltonian �1� accu-
rately describes the system, we can optimize the parameters
for achieving a better on/off ratio. For the purpose, increase
in �3 is naturally preferable as it makes the adiabatic ap-
proximation better, though it tends to reduce �2q. Neverthe-
less, by adjusting other parameters together, we can increase
the on/off ratio without sacrificing �2q, as the relevant quan-
tities scale favorably with �3 �Ref. 30�. For example, if we
choose Ip1= Ip2= Ip3=600 GHz /�0, �1 /h=3 GHz, �2 /h
=5 GHz, �3 /h=15 GHz and ��3

ac=2 m�0, J12 /h
=0.049 GHz and J13 /h=J23 /h=0.64 GHz are required in
order to obtain the maximal on-state Rabi frequency of 10
MHz and to maximize the on/off ratio, under a constraint of
Jres

xx =0. Then, the on/off ratio can be 	270.
In conclusion, we have studied the parametrically-induced

tunable coupling scheme between two flux qubits biased at
the coherence optimal points. The on-state coupling as well
as the off-state residual coupling depends nonmonotonically
on the flux bias of the coupler qubit. The dependence agrees
quantitatively with the calculations based on the three-qubit
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FIG. 3. �Color online� Detailed spectroscopy in the weak exci-
tation power limit for a range of the coupler flux bias ��3. Qubits 1
and 2 are kept at their coherence optimal points. 
�a�,�b�� Energies
of the single-qubit excitations from the ground state, E10 and E01,
measured respectively using SQUIDs 1 and 2. �c� Energy of the
collective excitation of the two qubits, E11. The red solid lines rep-
resent a fitting using the three-qubit Hamiltonian.
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FIG. 4. �Color online� �a� Rabi frequency �2q of the sum-
frequency transition vs ��3. The solid line �red� is the calculated
value ��00���H /��3��11����3

ac /h assuming ��3
ac=0.52 m�0. The

dashed �blue� and dotted �green� lines depict Rabi frequencies in-
duced by the same amount of flux drive on qubits 1 and 2, respec-
tively. �b� Residual coupling Jres

zz in the off state vs ��3. The solid
line �red� is the calculated value using the three-qubit Hamiltonian.
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Hamiltonian. The present study is an example of engineered
quantum-state transition rules as well as controllable static
qubit-qubit interaction. We are able to sweep the flux bias of
the coupler qubit from the region of forbidden two-qubit
transition to a special bias point of maximal two-qubit Rabi
frequency. We expect future superconducting quantum cir-
cuits aimed at quantum information processing to generalize

this idea. For instance, nonlinear couplers could be used to
mediate and modulate couplings between qubits and a reso-
nator as a quantum information bus.

We are grateful to S. Ashhab, P. Bertet, P.-M. Billangeon,
and S. Lloyd for valuable discussions. A.O.N. acknowledges
support from the Academy of Finland.
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